Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 306: 122473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335719

RESUMO

Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais , Humanos , Ligantes , Colágeno/química , Matriz Extracelular , Hidrogéis/química
2.
APL Bioeng ; 6(1): 010901, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028490

RESUMO

The cell nucleus is commonly considered to be a stiff organelle that mechanically resists changes in shape, and this resistance is thought to limit the ability of cells to migrate through pores or spread on surfaces. Generation of stresses on the cell nucleus during migration and nuclear response to these stresses is fundamental to cell migration and mechano-transduction. In this Perspective, we discuss our previous experimental and computational evidence that supports a dynamic model, in which the soft nucleus is irreversibly shaped by viscous stresses generated by the motion of cell boundaries and transmitted through the intervening cytoskeletal network. While the nucleus is commonly modeled as a stiff elastic body, we review how nuclear shape changes on the timescale of migration can be explained by simple geometric constraints of constant nuclear volume and constant surface area of the nuclear lamina. Because the lamina surface area is in excess of that of a sphere of the same volume, these constraints permit dynamic transitions between a wide range of shapes during spreading and migration. The excess surface area allows the nuclear shape changes to mirror those of the cell with little mechanical resistance. Thus, the nucleus can be easily shaped by the moving cell boundaries over a wide range of shape changes and only becomes stiff to more extreme deformations that would require the lamina to stretch or the volume to compress. This model explains how nuclei can easily flatten on surfaces during cell spreading or elongate as cells move through pores until the lamina smooths out and becomes tense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...